Effective graph classification based on topological and label attributes
نویسندگان
چکیده
Graph classification is an important data mining task, and various graph kernel methods have been proposed recently for this task. These methods have proven to be effective, but they tend to have high computational overhead. In this paper, we propose an alternative approach to graph classification that is based on feature vectors constructed from different global topological attributes, as well as global label features. The main idea is that the graphs from the same class should have similar topological and label attributes. Our method is simple and easy to implement, and via a detailed comparison on real benchmark datasets, we show that our topological and label feature-based approach delivers competitive classification accuracy, with significantly better results on those datasets that have large unlabeled graph instances. Our method is also substantially faster than most other graph kernels. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 5: 265–283, 2012
منابع مشابه
Graph Classification via Topological and Label Attributes
Graph classification is an important data mining task, and various graph kernel methods have been proposed recently for this task. These methods have proven to be effective, but they tend to have high computational overhead. In this paper, we propose an alternative approach to graph classification that is based on feature-vectors constructed from different global topological attributes, as well...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملStructured Label Inference for Visual Understanding
Visual data such as images and videos contain a rich source of structured semantic labels as well as a wide range of interacting components. Visual content could be assigned with fine-grained labels describing major components, coarse-grained labels depicting high level abstractions, or a set of labels revealing attributes. Such categorization over different, interacting layers of labels evince...
متن کاملDistance-Based Topological Indices and Double graph
Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...
متن کاملdominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Analysis and Data Mining
دوره 5 شماره
صفحات -
تاریخ انتشار 2012